12 research outputs found

    Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue

    Get PDF
    Abstract In an experimental model of unilateral pneumonia caused by Klebsiella pneumoniea in rats we investigated whether intravenous administration of liposomes with prolonged blood circulation time resulted in significant localization of liosomes in infected lung tissu. Liposomes (100 nm) composed of hydrogenated phosphatidylinositol:hydrogenated phosphatidylcholine:cholesterol (mola ratio, 1:10:5) radiolabeled with gallium-67-deferoxamine showed relatively long blood circulation time. The degree of localization of these long circulating liposomes in the infected lef lung was significantly higher compared to that of localization of 110 nm egg phosphatidylglycerol:egg phosphatidylcholine:cholesterol (molar ratio, 1:10:5) liposomes which exhibited relatively short blood circulation time. At 16 h after administration of the long circulating liposomes (when 10% of the injected dose was still present in the bloodstream) localization of liposomes in the infected left lung was increased up to 10-fold compared to the left lung of uninfected rats, and appeared to be highly correlated with the intensity of the infection. In the uninfected right lung the localization of long circulating liposomes was not increased. The degree of localization of liposomes in the infected tissue is dependent on the residence time of liposomes in the blood compartment. The extent of localization of long circulating liposomes in infected tissue appeared to be dependent on the liposomal dose administered

    Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system

    Get PDF
    As liposomes are cleared from the circulation to a substantial extent by the phagocytic cells of the mononuclear phagocyte system (MPS), there is a question whether administration of liposome-based therapeutic agents interferes with clearance of infectious organisms by the MPS from blood. In the present study, at first the effect of administration of three types of empty liposomes (devoid of drug), differing in blood residence time, on carbon clearance and bacterial clearance from blood was studied with mice. Classical liposomes (LIP A) and placebo liposomes with lipid composition as in AmBisome (LIP B) or as in Doxil (LIP C) were used. Liposomes were administered intravenously as a single dose. Second, the effect of multiple-dose administration of AmBisome on bacterial blood clearance was studied with rats. AmBisome was administered with two different dosage schedules. The blood clearance capacity of the MPS was monitored at different time points after the last liposome injection. It was shown that the carbon blood clearance capacity of the MPS was impaired only at a high lipid dose of empty classical liposomes. The bacterial blood clearance capacity was never impaired, not even after prolonged treatment with AmBisome administered in a clinically relevant regimen

    Liposomal amphotericin B (AmBisome) reduces dissemination of infection as compared with amphotericin B deoxycholate (Fungizone) in a rate model of pulmonary aspergillosis

    Get PDF
    The efficacy of AmBisome, a liposomal formulation of amphotericin B, was compared with that of Fungizone (amphotericin B desoxycholate), in a rat model of unilateral, pulmonary aspergillosis. Repeated administration of cyclophosphamide resulted in persistent, severe granulocytopenia. The left lung was inoculated with a conidial suspension of Aspergillus fumigatus, thus establishing an unilateral infection. Antifungal treatment was started 40 h after fungal inoculation, at which time mycelial disease was confirmed by histological examination. Both Fungizone 1 mg/kg and AmBisome 10 mg/kg resulted in increased survival in terms of delayed as well as reduced mortality. Quantitative cultures of lung tissue showed that only AmBisome 10 mg/kg resulted in reduction of the number of fungal cfus in the inoculated left lung. Compared with Fungizone, both AmBisome 1 mg/kg/day and AmBisome 10 mg/kg/day significantly prevented dissemination from the infected left lung to the right lung. In addition, both AmBisome regimens reduced hepatosplenic dissemination, and the 10 m/kg dosage fully prevented this complication. In conclusion, when compared with Fungizone, in this model AmBisome is more effective in reducing dissemination of unilateral, pulmonary aspergillosis, even when given in relatively low dosage. Such low dosages may have a place in prophylactic settings

    In vivo synergistic interaction of liposome-coencapsulated gentamicin and ceftazidime

    Get PDF
    Antimicrobial agents may interact synergistically. But to ensure synergy in vivo, the drugs should both be present at the site of infection at sufficiently high concentrations for an adequate period of time. Coencapsulation of the drugs in a drug carrier may ensure parallel tissue distributions. Since liposomes localize preferentially at sites of infection, this mode of drug delivery could, in addition, increase drug concentrations at the focus of infection. The therapeutic efficacy of gentamicin and ceftazidime coencapsulated into liposomes was examined by monitoring survival in a rat model of an acute unilateral pneumonia caused by antibiotic-susceptible and antibiotic-resistant Klebsiella pneumoniae strains. It is shown that administration of gentamicin in combination with ceftazidime in the free form either as single dose or as 5-day treatment resulted in an additive effect on rat survival in both models. In contrast, targeted delivery of liposome-coencapsulated gentamicin and ceftazidime resulted in a synergistic interaction of the antibiotics in both models. Consequently, liposome coencapsulation of gentamicin and ceftazidime allowed both a shorter course of treatment at lower cumulative doses compared with administration of the antibiotics in the free form to obtain complete survival of rats. Liposomal coencapsulation of synergistic antibiotics may open new perspectives in the treatment of severe infections

    Evidence Supporting a Role for Mammalian Chitinases in Efficacy of Caspofungin against Experimental Aspergillosis in Immunocompromised Rats

    Get PDF
    Objectives:Caspofungin, currently used as salvage therapy for invasive pulmonary aspergillosis (IPA), strangely only causes morphological changes in fungal growth in vitro but does not inhibit the growth. In vivo it has good efficacy. Therefore the question arises how this in vivo activity is reached. Caspofungin is known to increase the amount of chitin in the fungal cell wall. Mammals produce two chitinases, chitotriosidase and AMCase, which can hydrolyse chitin. We hypothesized that the mammalian chitinases play a role in the in vivo efficacy of caspofungin.Methods:In order to determine the role of chitotriosidase and AMCase in IPA, both chitinases were measured in rats which did or did not receive caspofungin treatment. In order to understand the role of each chitinase in the breakdown of the caspofungin-exposed cells, we also exposed caspofungin treated fungi to recombinant enzymes in vitro.Results:IPA in immunocompromised rats caused a dramatic increase in chitinase activity. This increase in chitinase activity was still noted when rats were treated with caspofungin. In vitro, it was demonstrated that the action of both chitinases were needed to lyse the f

    Addition of 17-(allylamino)-17-demethoxy-geldanamycin to a suboptimal caspofungin treatment regimen in neutropenic rats with invasive pulmonary aspergillosis delays the time to death but does not enhance the overall therapeutic efficacy

    Get PDF
    Caspofungin (CAS) which is used as salvage therapy in patients with invasive pulmonary aspergillosis (IPA) inhibits the 1,3-β-D-glucan synthesis in Aspergillus fumigatus. Inhibiting 1,3-β-D-glucan synthesis induces a stress response and in an invertebrate model it was demonstrated that inhibiting this response with geldamycin enhanced the therapeutic efficacy of CAS. Since geldamycin itself is toxic to mammalians, the therapeutic efficacy of combining geldamycin with CAS was not studied in rodent models. Therefore in this study we investigated if the geldamycin derivate 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) was able to enhance the therapeutic efficacy of CAS in vitro and in our IPA model in transiently neutropenic rats. In vitro we confirmed the earlier demonstrated synergy between 17-AAG and CAS in ten A. fumigatus isolates. In vivo we treated A. fumigatus infected neutropenic rats with a sub-optimal dose of 0.75 mg/kg/day CAS and 1 mg/kg/day 17-AAG for ten days. Survival was monitored for 21 days after fungal inoculation. It appeared that the addition 17-AAG delayed death but did not improve overall survival of rats with IPA. Incre

    Distinctive Cytokines as Biomarkers Predicting Fatal Outcome of Severe Staphylococcus aureus Bacteremia in Mice

    Get PDF
    Invasive Staphylococcus aureus infections are frequently associated with bacteraemia. To support clinical decisions on antibiotic therapy, there is an urgent need for reliable markers as predictors of infection outcome. In the present study in mice, bacteraemia was established by intravenous inoculation of a clinical S. aureus isolate at the LD50 inoculum. As potential biomarkers for fatal outcome, blood culture (qualitative and quantitative), serum levels of C-reactive protein (CRP), as well as 31 selected cytokines and chemokines were assessed during the first three days of infection. A positive S. aureus blood culture, the quantitative blood culture, CRP levels, and levels of eight cytokines were indicative for the presence of S. aureus bacteraemia. However, only tumor necrosis factor (TNF) α, interleukin (IL) 1α, and keratinocyte chemoattractant (KC; a functional homologue of human IL-8) were each significantly elevated in eventually non-surviving infected mice versus eventually surviving infected mice. In severe S. aureus bacteraemia in mice, TNF-α, IL-1α, and KC are biomarkers predicting fatal outcome of infection. KC was a biomarker elevated irrespective the progression of infection, which is very interesting regarding clinical application in view of the heterogeneity of patients experiencing bacteraemia in this respect

    Successful high-dosage monotherapy of tigecycline in a multidrug-resistant Klebsiella pneumoniae pneumonia-septicemia model in rats

    Get PDF
    Background: Recent scientific reports on the use of high dose tigecycline monotherapy as a “drug of last resort” warrant further research into the use of this regimen for the treatment of severe multidrug-resistant, Gram-negative bacterial infections. In the current study, the therapeutic efficacy of tigecycline monotherapy was investigated and compared to meropenem monotherapy in a newly developed rat model of fatal lobar pneumonia-septicemia. Methods: A Klebsiella pneumoniae producing extended-spectrum β-lactamase (ESBL) and an isogenic variant producing K. pneumoniae carbapenemase (KPC) were used in the study. Both strains were tested for their in vitro antibiotic susceptibility and used to induce pneumonia-septicemia in rats, which was characterized using disease progression parameters. Therapy with tigecycline or meropenem was initiated at the moment that rats suffered from progressive infection and was administered 12-hourly over 10 days. The pharmacokinetics of meropenem were determined in infected rats. Results: In rats with ESBL pneumonia-septicemia, the minimum dosage of meropenem achieving survival of all rats was 25 mg/kg/day. However, in rats with KPC pneumonia-septicemia, this meropenem dosage was unsuccessful. In contrast, all rats with KPC pneumonia-septicemia were successfully cured by administration of high-dose tigecycline monotherapy of 25 mg/kg/day (i.e., the minimum tigecycline dosage achieving 100% survival of rats with ESBL pneumonia-septicemia in a previous study). Conclusions: The current study supports recent literature recommending high-dose tigecycline as a last resort regimen for the treatment of severe multidrug-resistant bacterial infections. The use of ESBL- and KPC-producing K. pneumoniae strains in the current rat model of pneumonia-septicemia enables further investigation, helping provide supporting data for follow-up clinical trials in patients suffering from severe multidrug-resistant bacterial respiratory infections

    Assessing Amyloid Pathology in Cognitively Normal Subjects Using F-18-Flutemetamol PET: Comparing Visual Reads and Quantitative Methods

    Get PDF
    Our objective was to determine the optimal approach for assessing amyloid disease in a cognitively normal elderly population. Methods: Dynamic 18F-flutemetamol PET scans were acquired using a coffeebreak protocol (a 0- to 30-min scan and a 90- to 110-min scan) on 190 cognitively normal elderly individuals (mean age, 70.4 y; 60% female). Parametric images were generated from SUV ratio (SUVr) and nondisplaceable binding potential (BPND) methods, with cerebellar gray matter as a reference region, and were visually assessed by 3 trained readers. Interreader agreement was calculated using κ-statistics, and semiquantitative values were obtained. Global cutoffs were calculated for both SUVr and BPND using a receiver-operating-characteristic analysis and the Youden index. Visual assessment was related to semiquantitative classifications. Results: Interreader agreement in visual assessment was moderate for SUVr (κ 5 0.57) and good for BPND images (κ 5 0.77). There was discordance between readers for 35 cases (18%) using SUVr and for 15 cases (8%) using BPND, with 9 overlapping cases. For the total cohort, the mean (±SD) SUVr and BPND were 1.33 (±0.21) and 0.16 (±0.12), respectively. Most of the 35 cases (91%) for which SUVr image assessment was discordant between readers were classified as negative based on semiquantitative measurements. Conclusion: The use of parametric BPND images for visual assessment of 18F-flutemetamol in a population with low amyloid burden improves interreader agreement. Implementing semiquantification in addition to visual assessment of SUVr images can reduce false-positive classification in this population

    Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice

    No full text
    Objectives: Improvement of the efficacy of drug treatment in mycobacterial infection by the development and application of targeted drug delivery. Methods: In disseminated Mycobacterium avium infection in mice, the relative efficacy of the antimycobacterial agents that are currently used in combination therapy was investigated. Next, the effect of the addition of targeted delivery of amikacin to the infected tissues in the initial phase of treatment was studied. Amikacin was chosen because of its unique rapid and high mycobacterial killing capacity. As drug delivery tool, long-circulating sterically stabilized liposomes were used. Results: Treatment with clarithromycin alone daily (6 days aweek) slowly killed most of the mycobacteria in the lung, liver, spleen, inguinal and mesenterial lymph nodes. However, after 24 weeks of treatment, persistence of substantial numbers of mycobacteria in the infected organs was observed. The addition of ethambutol to the clarithromycin regimen did not significantly enhance the efficacy of treatment, neither did rifampicin as a third agent. In contrast, the addition of liposomal amikacin in the initial phase of therapy resulted in rapid and complete elimination of the mycobacteria in all infected organs within 12 weeks of treatment without relapse of infection. As a result, total treatment duration could be significantly reduced to 12 weeks. Conclusions: In M. avium infection in mice, the approach of targeted drug delivery was successful. The rapid decrease in the mycobacterial load followed by complete killing, including the persistent mycobacteria considered responsible for relapse of infection, allows a significant reduction of the total treatment duration
    corecore